A New Easton Theorem for Supercompactness and Level by Level Equivalence ∗†
نویسنده
چکیده
We establish a new Easton theorem for the least supercompact cardinal κ that is consistent with the level by level equivalence between strong compactness and supercompactness. This theorem is true in any model of ZFC containing at least one supercompact cardinal, regardless if level by level equivalence holds. Unlike previous Easton theorems for supercompactness, there are no limits on the Easton functions F used, other than the usual constraints given by Easton’s theorem and the fact that if δ < κ is regular, then F (δ) < κ. In both our ground model and the model witnessing the conclusions of our theorem, there are no restrictions on the structure of the class of supercompact cardinals.
منابع مشابه
More Easton Theorems for Level by Level Equivalence ∗ † Arthur
We establish two new Easton theorems for the least supercompact cardinal that are consistent with the level by level equivalence between strong compactness and supercompactness. These theorems generalize [1, Theorem 1]. In both our ground model and the model witnessing the conclusions of our theorem, there are no restrictions on the structure of the class of supercompact cardinals.
متن کاملA universal indestructibility theorem compatible with level by level equivalence
We prove an indestructibility theorem for degrees of supercompactness that is compatible with level by level equivalence between strong compactness and supercompactness.
متن کاملHod-supercompactness, Indestructibility, and Level by Level Equivalence
In an attempt to extend the property of being supercompact but not hod-supercompact to a proper class of indestructibly supercompact cardinals, a theorem is discovered about a proper class of indestructibly supercompact cardinals which reveals a surprising incompatibility. However, it is still possible to force to get a model in which the property of being supercompact but not hod-supercompact ...
متن کاملIndestructible Strong Compactness and Level by Level Equivalence with No Large Cardinal Restrictions
We construct a model for the level by level equivalence between strong compactness and supercompactness with an arbitrary large cardinal structure in which the least supercompact cardinal κ has its strong compactness indestructible under κ-directed closed forcing. This is in analogy to and generalizes [3, Theorem 1], but without the restriction that no cardinal is supercompact up to an inaccess...
متن کاملA note on tall cardinals and level by level equivalence
Starting from a model V “ZFC + GCH + κ is supercompact + No cardinal is supercompact up to a measurable cardinal”, we force and construct a model V P such that V P “ZFC + κ is supercompact + No cardinal is supercompact up to a measurable cardinal + δ is measurable iff δ is tall” in which level by level equivalence between strong compactness and supercompactness holds. This extends and generaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017